On implementing Omega with weak reliability and synchrony assumptions
(Extended abstract)

Marcos K. Aguilera¹ Carole Delporte-Gallet² Hugues Fauconnier² Sam Toueg³

ABSTRACT
We study the feasibility and cost of implementing Ω—a fundamental failure detector at the core of many algorithms—in systems with weak reliability and synchrony assumptions. Intuitively, Ω allows processes to eventually elect a common leader. We first give an algorithm that implements Ω in a weak system S where processes are synchronous, but: (a) any number of them may crash, and (b) only the output links of an unknown correct process are eventually timely (all other links can be asynchronous and/or lossy). This is in contrast to previous implementations of Ω which assume that a quadratic number of links are eventually timely, or systems that are strong enough to implement the eventually perfect failure detector ✶. We next show that implementing Ω in S is expensive: even if we want an implementation that tolerates just one process crash, all correct processes (except possibly one) must send messages forever; moreover, a quadratic number of links must carry messages forever. We then show that with a small additional assumption—the existence of some unknown correct process whose asynchronous links are lossy but fair—we can implement Ω efficiently: we give an algorithm for Ω such that eventually only one process (the elected leader) sends messages.

1. INTRODUCTION

Background, motivation and results
Failure detectors are basic tools of fault-tolerant distributed computing that can be used to solve fundamental problems such as consensus, atomic broadcast, and group membership. For this reason there has been growing interest in the implementation of failure detectors [1, 3, 7, 10, 12, 19, 20, 21, 23].

One failure detector of particular interest is Ω [5]. Roughly speaking, with Ω every process p has a local variable leader_p that contains the identity of a single process that p considers this process to be its current leader. Initially, different processes may have different leaders, but Ω guarantees that there is a time after which all processes have the same, non-faulty leader. Failure detector Ω is important for both theoretical and practical reasons: it has been shown to be the weakest failure detector with which one can solve consensus [5], and it is the failure detector used by several consensus algorithms, including some that are used in practice (e.g., [13, 14, 17, 21, 22]).

In this paper, we study the problem of implementing Ω in systems with weak reliability and synchrony assumptions, and we are particularly interested in communication-efficient implementations.

Our starting point are systems where all links are asynchronous and lossy: messages can suffer arbitrary delays or even be lost. In addition, processes may crash, but we assume that they are synchronous: their speed is bounded and they have local clocks that can measure real-time intervals. We denote such a system by S^−.

Since all messages can be lost or arbitrarily delayed in S^−, it is clear that Ω cannot be implemented in such a system. Thus, we make the following additional assumption: there is at least one correct process whose output links are eventually timely (intuitively, this means that there is an unknown bound δ and a time after which every message sent from that process is received within δ time). We call such a process an eventually timely source, denoted ◊source, and we denote by S

¹HP Labs Systems Research Center, 1501 Page Mill Road, Mail Stop 1250, Palo Alto, CA, 94304, USA, aguilera@hpl.hp.com
²LIAFA, Université D. Diderot, 2 Place Jussieu, 75251, Paris Cedex 05, France, {cd,hf}@liafa.jussieu.fr
³Department of Computer Science, University of Toronto, Toronto, Canada, sam@cs.toronto.edu
a system S^{-} with at least one \circ-source. Note that processes do not know the identity of the \circ-source(s) in S, the time after which their output links become timely, or the corresponding message delay bound(s). Moreover, except for the output links of the \circ-source(s), all the other links in S may be asynchronous and/or lossy.

S is a very weak system because processes may be unable to communicate with each other. In S only messages sent by the unknown \circ-source(s) are guaranteed to be received. All other messages, including all those sent to the \circ-source(s), can be lost. Thus, processes cannot use \circ-sources as “forwarding nodes” to communicate reliably with each other.

Can one implement Ω in system S? Note that Ω requires that processes eventually agree on a common leader, and it is not obvious how to achieve this agreement in a system where processes may be unable to communicate with each other. For example, consider a system S where p and q cannot communicate (say, all the messages they send are lost). Suppose there are three other processes s_1, s_2, and s_3, such that s_1 and s_2 behave timely towards p, and s_2 and s_3 behave timely towards q, but the messages from s_1 to q, and those from s_3 to p, are often lost or greatly delayed. For p, the natural leader candidates are s_1 and s_2; while for q the candidates are s_2 and s_3. Any implementation of Ω must ensure that p and q eventually agree on the same leader—a non-trivial task here since p and q cannot communicate with each other (or with any other process).

Our first result is an algorithm that implements Ω in system S. So processes are indeed able to agree on a common leader despite permanent communication failures and any number of crashes. This algorithm for Ω, however, has a serious drawback: it forces all the processes to periodically send messages forever. This is undesirable, and perhaps it can be avoided. Intuitively, after a process becomes the common leader,\(^1\) it must periodically send messages forever (because if it crashes, processes must be able to notice this failure and choose a new leader); but from now on no other process needs to be monitored. Thus, after processes agree on a common leader, no process other than the leader should have to send messages. This leads us to the following definition and a related question. An algorithm for Ω is communication-efficient if there is a time after which only one process sends messages. Is there a communication-efficient algorithm for Ω in system S?

To answer this question we investigate the communication complexity of implementations of Ω in system S, and we derive two types of lower bounds: one on the number of processes that must send messages forever, and one on the number of links that must carry messages forever. Specifically, we show that for any algorithm for Ω in S: (a) in every run all correct processes, except possibly one, must send messages forever; and (b) in some run at least $(n^2 - 1)/4$ links must carry messages forever, where n is the number of processes in S. These lower bounds hold even if we assume that at most one process may crash. We conclude that there is no communication-efficient algorithm for Ω in S that can tolerate one crash.

We next consider how to strengthen S so that communication efficiency can be achieved. Specifically, since our impossibility result relies on the lack of reliable communication in S, we consider the following additional assumption: there is at least one unknown correct process such that the links to and from that process are fair. A fair link may lose messages, but it satisfies the following property: messages can be partitioned into types, and if messages of some type are sent infinitely often, then messages of that type are also received infinitely often. A correct process whose input and output links are fair is said to be a fair hub. We denote by S^{+} a system S with at least one fair hub (whose identity is not known).\(^2\)

S^{+} is a weak system because it does not ensure pairwise timely communication. In fact, in S^{+} only messages sent from the \circ-source(s) are guaranteed to be eventually timely. All other messages, including all those sent to the \circ-source(s), can be arbitrarily delayed. Thus, processes cannot use \circ-sources as intermediate nodes to communicate with each other in a timely way.

Our next result is a communication-efficient algorithm for Ω in S^{+}. We derive this algorithm in two stages: we first give a simpler algorithm for a system S where all the links are fair (rather than just the links of an unknown fair hub). We then modify this algorithm so that it works in S^{+}. Both algorithms tolerate any number of crash failures (in addition to message losses in lossy links). Tables 1 and 2 summarize our results on the implementability (and communication efficiency) of Ω.

\(^1\)Note that processes may never know whether this has already occurred.

\(^2\)So S^{+} is a system S^{-} with at least one eventually timely source and at least one fair hub, whose identities are not known.

<table>
<thead>
<tr>
<th>System</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Links: asynchronous and lossy</td>
</tr>
<tr>
<td></td>
<td>Processes: asynchronous and subject to crashes</td>
</tr>
<tr>
<td>S</td>
<td>S^{-} with at least one eventually timely source (i.e., a correct process whose output links are eventually timely)</td>
</tr>
<tr>
<td>S^{+}</td>
<td>S with at least one fair hub (i.e., a correct process whose input and output links may be lossy but are fair)</td>
</tr>
</tbody>
</table>

Table 1: Systems considered in this paper.
<table>
<thead>
<tr>
<th>System</th>
<th>Ω algorithm</th>
<th>Communication-efficient Ω algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>S⁻</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>S</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>S⁺</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2: Implementability of Ω.

In summary, our contributions are the following:

1. We study the feasibility and cost of implementing Ω—a fundamental failure detector at the core of many algorithms—in systems with weak reliability and synchrony assumptions.

2. We give the first algorithm that implements Ω in a weak system where only the output links of some unknown correct process are eventually timely (all other links can be asynchronous and/or lossy). This is in contrast to previous implementations of Ω which require systems with a quadratic number of eventually timely links, or systems that are strong enough to implement ◇P.

3. We show that implementing Ω in this weak system is expensive: all correct processes (except possibly one) must send messages forever; moreover, a quadratic number of links must carry messages forever. This holds even if we want an implementation that tolerates just one process crash.

4. We then show that with a small additional assumption—the existence of some unknown correct process whose asynchronous links are lossy but fair—we can implement Ω efficiently, i.e., such that eventually only one process (the elected leader) sends messages.

As a final remark, we note that the eventually perfect failure detector ◇S⁺ can not be implemented in system S. So S is an example of a system that is strong enough to implement Ω but too weak to implement ◇P. This, together with our results on the cost of implementing Ω in S and S⁺, partially answers some questions posed by Keidar and Rajsbaum in their 2002 PODC tutorial [16].

Related work

Related work concerns the use of Ω to solve agreement problems (e.g., consensus and atomic broadcast), and the implementation of Ω in various types of partially synchronous systems [11].

Ω is the weakest failure detector that can be used to solve consensus and atomic broadcast in systems with a majority of correct processes [6, 5], and it is the failure detector required by several algorithms [4, 13, 14, 17, 18, 21, 22].

A simple implementation of Ω consists of implementing ◇P first and outputting the smallest process currently not suspected by ◇P [9, 16, 17]. But this approach has serious drawbacks. In particular, it requires a system that is strong enough to implement ◇P (a failure detector that is strictly stronger than Ω), and it requires all processes to send messages forever (just to implement ◇P).

Several papers have focused on reducing the communication overhead of failure detector implementations. The algorithm in [19] implements failure detector ◇S⁴ in a way that only n links carry messages forever. But this algorithm requires very strong system properties, namely, that no message is ever lost, and all links are eventually timely in both directions. [20] has an algorithm for Ω, but the paper assumes some strong system properties: all links are eventually reliable and timely.

Another communication-efficient implementation of Ω was given in [1]. In that implementation, only the links to and from some (unknown) correct process need to be eventually timely, all other links can be asynchronous and lossy. This system assumption is weaker than the ones in [19, 20]. But it is stronger than the one we assume here for S⁺: indeed it is strong enough to allow the implementation of ◇P (which cannot be implemented in S⁺).

Another related result is the algorithm that transforms ◇S to Ω given in [8]. Note that one way to implement Ω is to first implement ◇S, and then use this transformation algorithm. But this approach cannot be used to implement Ω in system S: In fact, the transformation algorithm in [8] requires all processes to reliably communicate with each other (which may not be possible in S). Moreover, one must implement ◇S first, and it is not clear how this can be done by a communication-efficient algorithm in S⁺, short of using our algorithm, which already implements Ω.

Roadmap

We first give an informal model of systems S⁻, S and S⁺ (Section 2). We then consider the problem of implementing Ω in S: we first give an algorithm for Ω in S (Section 3), and then derive lower bounds on the communication complexity (Section 4). We next strengthen system S to derive communication-efficient algorithms for Ω: the first algorithm assumes that all links are fair (Section 5.1), the second one assumes that the links of some unknown correct process are fair, i.e., it works in
system S^+ (Section 5.2). A brief discussion concludes the paper. Due to space limitations, proofs are omitted, but they are included in the full version [2].

2. INFORMAL MODEL

We consider distributed systems with $n \geq 2$ processes $\Pi = \{0, \ldots, n - 1\}$ that can communicate with each other by sending messages through a set of unidirectional links Λ. We now describe the behavior of processes and links in more detail.

Processes. Processes execute by taking steps. In a step a process can either receive a set of messages and then change its state, or it can send a message and then change its state.\(^5\) The value of a variable of a process at time t is the value of that variable after the process takes a step at time t. There is a lower and upper bound on the rate of execution (number of steps per time unit) of any non-faulty process. Processes have clocks that are not necessarily synchronized, but we assume that they can accurately measure intervals of time (it is easy to extend our results to clocks with bounded drift rates).

A process can fail by permanently crashing, in which case it stops taking steps. We say that process p is alive at time t if it has not crashed by time t. We say a process is correct if it is always alive. We say a process is faulty if it is not correct. Unless we explicitly state otherwise, we consider systems where any number of processes may crash.

Links. We assume that the network is fully connected, i.e., $\Lambda = \Pi \times \Pi$. The unidirectional link from process p to process q is denoted by $p \rightarrow q$. We consider various types of links, all of which satisfy the following property:

- [Integrity]: Process q receives a message m from process p at most once, and only if p previously sent m to q.\(^6\)

A link $p \rightarrow q$ is eventually timely if it satisfies Integrity and the following property:

- [Eventual timeliness]: There exists a δ and a time t such that if p sends m to q at a time $t' \geq t$ and q is correct, then q receives m from p by time $t' + \delta$.

The maximum message delay δ associated with an eventually timely link is not known.

A link that intermittently loses messages may satisfy a fairness property. To define this property, we assume that messages carry a type in addition to its data. Fairness requires that if a process sends an infinite number of messages of a type through a link then the link delivers an infinite number of messages of that type. More precisely, we assume that messages consists of pairs $m = (type, data) \in \Sigma^* \times \Sigma^* \text{ where } \Sigma = \{0, 1\}$. A link $p \rightarrow q$ is fair if it satisfies Integrity and the following property:

- [Fairness]: For every type, if p sends infinitely many messages of type $type$ to q and q is correct, then q receives infinitely many messages of type $type$ from p.

We classify correct processes based on the properties of their links. An eventually timely source (denoted \circ-source) is a correct process whose output links are all eventually timely. (Only the outgoing links need to be timely, hence the word “source”.) A fair hub is a correct process whose input and output links are all fair.

Systems. We consider three systems, S^-, S, and S^+ that differ on the properties of their links (their process properties are those described at the beginning of this section). In all three systems all links satisfy the Integrity property. System S^- has no further requirements; in particular, all links can be asynchronous and/or lossy. In system S, we assume that there is at least one eventually timely source (whose identity is unknown). Except for the output links of the \circ-source(s), all other links can be asynchronous and/or lossy, and so most pairs of processes may be unable to communicate in S. System S^+ is a strengthening of system S that allows communication between all pairs of processes through some unknown fair hub. More precisely, S^+ is a system with at least one eventually timely source and at least one fair hub (their identities are not known). Note that in S^+ most pairs of processes may not be able to communicate in a timely fashion: even though they are fair, the links of the unknown fair hub(s) can still be asynchronous and/or lossy.

2.1 Failure detector Ω

The formal definition of failure detector Ω is given in [6, 5]. Informally, Ω outputs, at each process p, a single process denoted $leader_p$, such that the following property holds:

- There exists a correct process ℓ and a time after which, for every alive process p, $leader_p = \ell$.

If at time t, $leader_p$ contains the same correct process ℓ for all alive processes p, then we say that ℓ is the leader at time t. Note that at any given time processes do not know if there is a leader; they only know that eventually a leader emerges and remains.

2.2 Communication efficiency

We are interested in failure detector algorithms that minimize the usage of communication links. Note that

\(^5\)Our lower bounds also hold in a stronger model in which a process can receive, change state, and send in a single atomic step.

\(^6\)We assume that messages are unique, e.g., each message contains the id of the sender and a sequence number (this is implicit in all our algorithms).
in any reasonable implementation of a failure detector, some process needs to send messages forever. However, not every process needs to do that. We say that an implementation of failure detector Ω is communication-efficient if there is a time after which only one process sends messages.

3. IMPLEMENTING Ω IN SYSTEM S

We now give an algorithm that implements Ω in S. This algorithm ensures that processes eventually agree on a common leader, even though most pairs of processes may be unable to communicate with each other (recall that in S all links can be asynchronous and lossy, except for the output links of some unknown correct processes).

The basic idea is that each process selects its leader among the processes that seem to be currently alive. But since almost all links in S may suffer from arbitrary delays and/or losses, there are several problems that must be overcome. In particular: (a) different processes may have different views of which processes are currently alive, and the different views may never converge, (b) some processes may repeatedly alternate between appearing to be alive and dead, and continue to do so forever. Such problems complicate the task of selecting a common and permanent leader. For example, process p cannot simply select as its leader the “smallest” process that seems to be currently alive: problem (a) may cause different processes to have different leaders (forever), and problem (b) may cause p to change its leader forever.

To overcome these and other similar difficulties, processes maintain “accusation” counters, and they indirectly use the unknown e-source(s) to help them converge on the same correct process as the leader. The algorithm, described in full in Figure 1, roughly works as follows. Each process p maintains a set set_2 of processes that it considers to be currently alive: these are p’s current candidates for leadership. To select among the different candidates, p also maintains a $counter[q]$ for each process q, which is p’s rough estimate of how many times q’s was previously suspected of being dead. Process p selects as its leader the process ℓ in its set_2 that has the smallest $(counter[\ell], \ell)$ tuple. (The leader is recomputed whenever the set set_2 or the counters are updated).

To help each process maintain its set_2 and $counter$ variables, every process q sends $(ALIVE, q, counter[q])$ messages periodically, say every η time, to all other processes (note that most or all of these messages may be lost or delayed arbitrarily). If a process p receives $(ALIVE, q, counter[q])$ directly from q, p relays the message once to every other process, and it also resets a local timer, denoted $timer_1(q)$, to expire after $Timeout_1[q]$ time units\(^7\), which is the maximum delay that p expects until p receives the next $(ALIVE, q, counter[q])$ directly from q.\(^8\) If $timer_1(q)$ expires before receiving this message directly from q, then p sends an ACCUSATION message to q. When q receives an ACCUSATION message, it increments its $counter[q]$.

If p receives $(ALIVE, q, counter[q])$ either directly from q or relayed by another process, then p adds q to its set set_2, it updates its $counter[q]$ variable accordingly, and it also resets a timer, denoted $timer_2(q)$, for when it expects to receive the next $(ALIVE, q, counter[q])$ (directly or relayed). If $timer_2(q)$ expires before receiving this message, then p removes q from set_2.\(^9\)

THEOREM 1. The algorithm in Figure 1 implements Ω in system S.

4. IMPOSSIBILITY OF COMMUNICATION-EFFICIENT Ω IN SYSTEM S

We now consider the communication complexity of implementations of Ω in system S. Specifically we give two types of lower bounds: one is on the number of processes that send messages forever, and the other is on the number of links that carry messages forever. A corollary of these lower bounds is that there is no communication-efficient implementation of Ω in system S. The bounds that we derive here apply even if we assume that at most one process may crash.

THEOREM 2. Consider any algorithm for Ω in a system S with n processes where at most one process may crash.

1. In every run, all correct processes, except possibly one, send messages forever.

2. In some run, at least $\left\lceil \frac{n^2 - 1}{4} \right\rceil$ links carry messages forever.

From Theorem 2(1), we immediately get the following:

COROLLARY 3. There is no communication-efficient algorithm for Ω in a system S with $n \geq 3$ processes, even if we assume that at most one process may crash.

5. COMMUNICATION-EFFICIENT IMPLEMENTATIONS OF Ω

We now seek algorithms for Ω that require only one process to send messages forever (this also implies that

\(^7\)Note that $timer_1(q)$ is set to a time interval rather than an absolute time. The timer is decremented until it expires.

\(^8\)In the algorithm’s code, shown in Figure 1, p also adds q to a set denoted set_1, but this set is only used to facilitate the proof of correctness.

\(^9\)Since p does not know the maximum message delays associated with eventually timely links, every time a timer expires p increments the associated timeout.
on initialization:
- $\forall q \neq p : \text{Timeout1}[q] \leftarrow \eta + 1$
- $\forall q \neq p : \text{Timeout2}[q] \leftarrow \eta + 1$
- $\forall q \neq p : \text{reset timer1}(q)$ to $\text{Timeout1}[q]$
- $\forall q \neq p : \text{reset timer2}(q)$ to $\text{Timeout2}[q]$
- $q : \text{counter}[q] \leftarrow 0$

set $1 \leftarrow \{p\}; \text{set2} \leftarrow \{p\}$

start tasks 1 and 2

task 1:

loop forever
- send (ALIVE, p, counter[p]) to every process except p every η time

task 2:

upon receive (ALIVE, q, c) from q' do
- if $q = q'$ then
 - reset timer1(q) to $\text{Timeout1}[q]$
 - set1 \leftarrow set1 $\cup \{q\}$
 - send (ALIVE, q, c) to every process except p and q
 - reset timer2(q) to $\text{Timeout2}[q]$
 - set2 \leftarrow set2 $\cup \{q\}$
 - counter[q] \leftarrow max{counter[q], c}
- updateLeader()

upon expiration of timer1(q) do
- send ACCUSATION to q
- set1 \leftarrow set1 $\setminus \{q\}$
- $\text{Timeout1}[q] \leftarrow \text{Timeout1}[q] + 1$
- reset timer1(q) to $\text{Timeout1}[q]$

upon expiration of timer2(q) do
- set2 \leftarrow set2 $\setminus \{q\}$
- $\text{Timeout2}[q] \leftarrow \text{Timeout2}[q] + 1$
- reset timer2(q) to $\text{Timeout2}[q]$
- updateLeader()

upon receive ACCUSATION do
- counter[p] \leftarrow counter[p] + 1

Figure 1: Implementation of Ω for system S. **Figure 1: Implementation of Ω for system S.**

the number of links that carry messages forever is linear rather than quadratic). In order to achieve this, Theorem 2 implies that we must strengthen the system model S. In this section, we first give a communication-efficient algorithm for Ω that assumes that all links in S are fair (note that this system is stronger than S^+). We next modify this algorithm so that it works in a system S where only the links to and from some unknown correct process are fair, i.e., it works in system S^+.

5.1 Efficient implementation in a system S where all links are fair

We now seek a communication-efficient algorithm for Ω in a system S (i.e., a system with an eventually timely source) with the extra assumption that all links are fair.

One simple attempt to get communication efficiency is as follows. Each process: (a) sends ALIVE messages only if it thinks it is the leader, (b) maintains a set of processes, called Contenders, from which it received an ALIVE message recently (an adaptive timeout mechanism is used to determine if a message is “recent”), and (c) chooses as leader the process with smallest id in its current set of contenders.\(^\text{10}\) Such a simple algorithm would work in a system where all correct processes are \odot-sources. But in our system, it would fail: if the only \odot-source happens to be a process with a large id, the leadership could forever oscillate between the smaller correct processes.

One way to fix this problem is to estimate for each process the number of times it was previously accused of being slow. These accusation counters—rather than the process ids—are then used to select the leader among the current set of contenders. More precisely, each process keeps a counter on the number of times it was accused of being slow, and includes this counter in the ALIVE messages that it sends. Every process keeps the most up-to-date counter that it received from every other process, and picks as its leader the process with the smallest counter among the current set of contenders (using process id to break ties). If a process times out on a current contender, it sends an “accusation” message to this contender, which causes the contender to increment its own accusation counter. The hope is that the counter of each \odot-source remains bounded (because all its links are eventually timely), and so the \odot-source with the smallest counter is eventually selected as the leader by all.

This algorithm, however, does not work, because the accusation counter of a \odot-source may keep increasing forever! To see this, note that a \odot-source may stop contending for leadership voluntarily, when it selects another process as its leader (a non-\odot-source contender

\(^{10}\)A process always considers itself to be a contender, so if it does not have recent ALIVE messages from any other process, the process picks itself as leader.
with a smaller counter). When it does so, the p-source stops sending ALIVE messages (for communication efficiency). Unfortunately, this triggers processes to timeout on the p-source and send ACCUSATION messages that cause the p-source to increment its counters. Later, the accusation counter of the non-p-source may also increase (due to some legitimate accusations), and then the p-source may retake the leadership. In this way, the leadership may oscillate between the p-source and some non-p-sources forever.

To fix this problem, the p-source should increment its own accusation counter only if it receives a “legitimate” accusation, i.e., one that was caused by the delay or loss of one of its ALIVE message (and not by the fact that the p-source voluntarily stopped sending them). To determine whether an accusation is legitimate, each process p keeps track of the number of times it has voluntarily given up contending for the leadership in the past—this is its current phase number—and it includes this number in each ALIVE message that it sends. If any process q times out on p and wants to accuse p, it must now include its own view of p’s current phase number in the ACCUSATION that it sends to p; p considers this accusation to be legitimate only if the phase number that it contains matches its own. Furthermore, whenever p gives up the leadership voluntarily, it increments its own phase number: this causes p to ignore all the spurious accusations that result from its silence.

The Ω algorithm that embodies the above ideas is shown in Figure 2.

Theorem 4. The algorithm in Figure 2 implements Ω in a system S where all links are fair, and it is communication-efficient.

5.2 Efficient implementation in system S^+

We now describe a communication-efficient algorithm for Ω for a system S where only the links to and from some unknown correct process are fair, i.e., it works in system S^+. In this system the previous algorithm (Figure 2) does not work because some links can now experience arbitrary message losses.

The most obvious problem, and also the easiest one to solve, is that the ACCUSATION messages sent by a process p to another process q may never reach q: the link $p \rightarrow q$ may be dead. The obvious solution is for p to send each ACCUSATION of q to all processes (including the unknown fair hub); any process that receives such a message relays it once to q. This scheme preserves communication efficiency: after the permanent leader emerges, there are no new accusations, and so the relaying stops.

A more subtle problem, and a tougher one to solve, is that two leader contenders p and q may partition the processes in two sets Π_p and Π_q, such that processes in Π_p (including p) and those in Π_q (including q) have p

Figure 2: Communication-efficient implementation of Ω for a system S where all links are fair.

<table>
<thead>
<tr>
<th>Code for each process p:</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure updateLeader()</td>
</tr>
<tr>
<td>$\text{leader} \leftarrow \ell$ such that $(\text{counter}[\ell], \ell) = \min{(\text{counter}[q], q) : q \in \text{Contenders}}$</td>
</tr>
</tbody>
</table>

on initialization:

| 1. $\forall q \neq p : \text{Timeout}[q] \leftarrow \eta + 1$ |
| 2. $\forall q \neq p : \text{timer}(q) \leftarrow \text{off}$ |
| 3. $\forall q : \text{ph}[q] \leftarrow 0$ |
| 4. $\forall q : \text{counter}[q] \leftarrow 0$ |
| 5. $\text{Contenders} \leftarrow \{p\}$ |
| 6. $\text{leader} \leftarrow p$ |

start tasks 1 and 2

task 1:

| 7. loop forever |
| 8. while $\text{leader} = p$ do |
| 9. send (ALIVE, $\text{counter}[p], \text{ph}[p]$) to every process except p every η time |
| 10. $\text{ph}[p] \leftarrow \text{ph}[p] + 1$ |
| 11. while $\text{leader} \neq p$ do |
| 12. **task 2:** |

upon receive (ALIVE, d, i) from q do

| 13. $\text{Contenders} \leftarrow \text{Contenders} \cup \{q\}$ |
| 14. $\text{counter}[q] \leftarrow \max\{\text{counter}[q], d\}$ |
| 15. $\text{ph}[q] \leftarrow \max\{\text{ph}[q], i\}$ |
| 16. reset timer(q) to Timeout[q] |
| 17. updateLeader() |

upon expiration of timer(q) do

| 18. $\text{Contenders} \leftarrow \text{Contenders} - \{q\}$ |
| 19. send (ACCUSATION, $\text{ph}[q]$) to q |
| 20. Timeout[q] \leftarrow Timeout[q] + 1 |
| 21. updateLeader() |

upon receive (ACCUSATION, i) do

| 22. if $i = ph[p]$ then |
| 23. $\text{counter}[p] \leftarrow \text{counter}[p] + 1$ |
| 24. updateLeader() |
and q as their permanent leader, respectively. This can occur as follows: (a) the source s and the fair hub h are in Π, and they are distinct from p, (b) processes in Π receive timely Alive messages from q, but they never hear from p, (c) processes in Π receive timely Alive messages from p, but, except for h, they never hear from q, and (d) h receives timely Alive messages from both p and q, but chooses p as its permanent leader. In this scenario, nobody ever sends Accusation messages to p or q. Moreover, p and q never hear from each other. So both p and q keep thinking of themselves as the leader, forever.

One attempt to solve this problem is to relay all the Alive messages (like the Accusation messages) so that the contenders for leadership, such as p and q in the above scenario, can all hear from each other. Although this solution works, it is not communication-efficient because it forces all processes to send messages forever: the elected leader does not stop sending Alive messages, and each Alive is relayed by all.

To prevent partitioning while preserving communication efficiency, we use the following idea: roughly speaking, if a process r has p as its current leader, but receives an Alive message from a process $q \neq p$, then r sends a “Check” message telling q about the existence of p (and some other relevant information about p). Check messages can be lost, but if: (a) r is the fair hub h, (b) q keeps sending Alive messages to h, and (c) h continues to prefer p as its leader, then q will eventually receive a Check message from h and find out about its “rival” p. If this happens, q “challenges” the leadership of p by sending an Accusations to p if p does not appear to be timely. This scheme prevents the problematic scenario mentioned above, and it can be shown to work while preserving communication efficiency: after the common leader is elected, all the Alive messages come from that leader, and so there are no more Check messages.

All these ideas are incorporated in the algorithm of Figure 3. Note that Accusation and Check messages have an extra field containing the originator of the message (as opposed to the relayer).

Theorem 5. The algorithm in Figure 3 implements Ω in system S^+, and it is communication-efficient.

6. FINAL REMARKS

In their 2002 PODC tutorial [16], Keidar and Raipsbaum propose several open problems related to the implementation of failure detectors in partially synchronous systems. In particular, they ask what is the “weakest timing model where $\diamond S$ and/or Ω are implementable but $\diamond P$ is not”. As a partial answer to this question, we note that $\diamond P$ is not implementable in system S. In fact, in the full paper we show that this holds even if we strengthen S by assuming that: (a) all the links in S are reliable (i.e., no message is ever lost), and (b)

Code for each process p:

```plaintext
procedure updateLeader()
  leader ← $\ell$ such that $(\text{counter}[\ell], \ell) = \min\{(\text{counter}[q], q) : q \in \text{Contenders}\}$

on initialization:
  $\forall q \neq p : \text{Timeout}[q] ← \eta + 1$
  $\forall q \neq p : \text{timer}(q) ← \text{off}$
  $\forall q : \text{ph}[q] ← 0$
  $\forall q : \text{counter}[q] ← 0$

start tasks 1 and 2

task 1:
  loop forever
    while leader = $p$
      send $(\text{ALIVE}, \text{counter}[p], \text{ph}[p])$ to every process except $p$ every $\eta$ time
      $\text{ph}[p] ← \text{ph}[p] + 1$
    while leader $\neq p$ do nop

task 2:
  upon receive $(\text{ALIVE}, d, i)$ from $q$
    $\text{Contenders} ← \text{Contenders} \cup \{q\}$
    $\text{counter}[q] ← \max\{\text{counter}[q], d\}$
    $\text{ph}[q] ← \max\{\text{ph}[q], i\}$
    reset $\text{timer}(q)$ to $\text{Timeout}[q]$
    updateLeader()
  if $q \neq \text{leader}$ then
    send $(\text{CHECK}, \text{leader}, \text{ph}[\text{leader}])$ to $q$

upon receive $(\text{CHECK}, q, i)$ do
  if $\text{timer}(q)$ is off then
    $\text{ph}[q] ← \max\{\text{ph}[q], i\}$
    reset $\text{timer}(q)$ to $\text{Timeout}[q]$

upon expiration of $\text{timer}(q)$ do
  $\text{Contenders} ← \text{Contenders} − \{q\}$
  send $(\text{ACCUSATION}, q, \text{ph}[q])$ to every process except $p$
  $\text{Timeout}[q] ← \text{Timeout}[q] + 1$
  updateLeader()

upon receive $(\text{ACCUSATION}, q, i)$ do
  if $q = p$ then
    if $i = \text{ph}[p]$ then
      $\text{counter}[p] ← \text{counter}[p] + 1$
      updateLeader()
    else send $(\text{ACCUSATION}, q, i)$ to $q$
```

Figure 3: Communication-efficient implementation of Ω for system S^+.
processes know the identity of the o-source(s) in S. So S is an example of a system that is strong enough to implement Ω but too weak to implement ◇P. Similarly, S+ is strong enough for an efficient implementation of Ω, but still too weak for implementing ◇P. Intuitively, this is because the level of synchrony in S and S+ is not sufficient to get ◇P: in both systems only the output links of some correct process(es) are eventually timely. Note that if we strengthen the synchrony of S by assuming that both the input and output links of some correct process are eventually timely, then ◇P becomes implementable [1].

In [16] Keidar and Rajsbaum also ask: “Is building ◇P more costly than ◇S or Ω?” Concerning this question, note that any implementation of ◇P (even in a perfectly synchronous system) requires all alive processes to send messages forever, while Ω can be implemented such that eventually only the leader sends messages (even in a weak system such as S+).

Finally, it is also worth pointing out that the above results provide an alternative proof that ◇P is strictly stronger than ◇S[15]: this can be deduced from the fact that Ω (and hence ◇S) is implementable in system S but ◇P is not.

7. REFERENCES

